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Abstract. Quantum states of twin photons entangled in angular momentum and polarization provide new
degrees of freedom to researchers in quantum information and imaging. This work discuss these states and
also emphasizes differences between two proposed models for twin photons entangled in angular momentum.
Answers to the presented questions would contribute to a better understanding of this nonlinear process.

PACS. 42.50.-p Quantum optics – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox,
Bell’s inequalities, GHZ states, etc.) – 03.67.-a Quantum information

1 Introduction

The concept of photon has brought, and will continue
to bring, an indisputable richness to physics. In fact,
many fundamental questions have not been answered.
The distinct quantization of matter and light made the
integration of Schrödinger’s equation and the venerable
Maxwell’s equations difficult. However, unified relativistic
treatments (e.g., [1]) indicate that Maxwell’s equations
should also remain valid for single photons. The revival of
interest in the fundamental properties of light beams car-
rying angular momentum [2,3] contributes new questions
to quantum optics. Recent reviews on the angular mo-
mentum of light [4,3] give an introduction to the subject
including theory and applications.

Quantum results indicate that neither component of
the angular momentum (AM), L̂ or Ŝ, is a true angular
momentum [5] although both describe measurable prop-
erties. Indeed, eigenvalues connected to L̂ and Ŝ have also
been shown [6] to have a continuous spectrum of eigen-
values although they sum to a discrete set of eigenvalues
for the total angular momentum Ĵ. A recent study, based
on classical electrodynamics [7] shows (by conservation of
optical angular momentum flux) that the separation of
angular momentum into orbital and spin contributions is
not an artifact of paraxial approximations as formerly be-
lieved [8]. The quantum solution of this problem has yet
to be settled and, again, the photon concept will have to
be invoked for a general solution. Also, the possible depen-
dence of orbital AM on the state of motion of two distinct
observers demands a relativistic treatment.

The study of quantum state entanglement using twin
photons from the spontaneous parametric down conver-
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sion (SPDC) adds new zest to studies in information
theory, quantum computers and cryptography. Addition
of new degrees of freedom to quantum systems, such as
adding orbital AM to the photon pairs [6], increases the
number of dimensions of the Hilbert space needed for their
description or control. An experimental study based on
photon coincidences has started [9] to demonstrate trans-
fer of AM from the pump beam to the down converted
photons. Many questions have to be answered in this new
field of research; this work touches on a few of these. Sec-
tion 2 briefly describes SPDC and discuss some restric-
tions of common models to describe transfer of orbital
AM to SPDC. Section 3 shows a straightforward decom-
position of a light beam with orbital AM onto plane waves
and stress the importance of carrying experimental veri-
fications of the assignment [10] of an index l to the an-
nihilation operator for downconverted photons with or-
bital AM. It also prepares the reader for the assignment
of the l index to the down converted photon pair as a
whole. Section 4 gives a fast description of the theory pre-
sented in references [6,18]. Section 5 discuss polarization
and AM entanglement. Section 6 present a few ideas on
possible measurements on down converted photon pairs
on the position space {R}, complementary to the wave
vector space {K}. Conclusions are then presented.

2 Spontaneous parametric down conversion
and angular momentum

In SPDC [11], the workhorse for studies on state entangle-
ment with photons, the energy and momentum constraints
at the photon source establish strong temporal and spatial
correlation properties between the signal (s) and idler (i)
photons. These correlations establish states that cannot
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be written as independent products of quantum states for
s and i photons, known as entangled states. The simul-
taneity in pair creation leads to an energy entanglement
of a given photon pair, in the sense that if one detects
an s photon with a given energy, its conjugate i photon
cannot have an arbitrary value. The emission of a single
pair, in a random time and along two conjugated direc-
tions that cannot be known a priori, implies that the light
state representing this process is a quantum superposition
of all possible emissions. These conversions occur within
a nonlinear medium, such as a χ(2) crystalline medium,
with quite distinct refractive indexes along different di-
rections, or even within the amorphous glass constituting
an optical fiber through a χ(3) process [12]. Each class of
medium defines specific phase matching conditions that
must to be fulfilled for down conversion to occur.

Realistic pump beams are transversely finite and the
usual focusing conditions establish a Rayleigh range zR.
As it will be shown, a pump beam with infinite zR can-
not generate down converted light with orbital angular
momentum in a χ(2) medium. The transversely finite con-
dition is guaranteed by a manifold of properly weighted
plane-wave modes. The helical flow of energy in light
beams with angular momentum requires that the magni-
tude square of the field amplitude is a continuous function
of the azimuthal angle on the plane transverse to the direc-
tion of light beam propagation. This can also be demon-
strated in a quantum picture [6] but, in fact, this is obvious
by itself. This light beam, with angular momentum l, will
advance its phase by 2π for an azimuthal angular displace-
ment of ∆φ, where l∆φ = 2π. This occurs in one step s
of the helix, or s = c∆t, where c is the light speed and ∆t
is the time interval for this advance to occur. The angu-
lar speed of the energy flow is Ωφ = ∆φ/∆t. Substituting
∆t = s/c in Ωφ gives lΩφ = 2π/s, or s(lνφ) = c. De-
tection of Ωφ may demand interferometric techniques, an-
gular momentum filters, absorption by atoms or selected
molecular rotor levels and so on. The reader should look at
the cited reviews for references; for example, interferomet-
ric techniques and filters have been used to show the exis-
tence of l [13]. Several experiments, including absorption
of light by particulates in suspension [14], light interaction
with a macroscopic mechanical rotor [15] at microwave
frequency and atomic absorption [16] have demonstrated
the existence of the angular momentum l associated with
a light beam.

2.1 Toy models for SPDC

“Toy” model Hamiltonians used to represent twin beams
may give good insights on photon entanglement in sim-
ple scattering geometries of parametric down conversion
and are valuable tools to this task. However, these mod-
els usually do not consider the unit polarization vectors
of the down converted beams and their product with the
nonlinear susceptibility tensor of the medium. In these
cases, they cannot be used to represent general cases of
twin photons carrying AM because the necessary symme-
try elements of the medium and the scattering geometries

were not considered. These (over-)simplified Hamiltonians
may lead to toy states of light of the form

|Ψ〉 =
∫

dqsdqidωsdωi Φ(qs,qi;ωs, ωi)

× â†s(qs, ωs)â
†
i (qi, ωi)|0〉. (1)

where Φ(qs,qi;ωs, ωi) is the spectral function (sometimes
designate as state function, mode function and other vari-
ations) and qj are the wave vectors associated with the
down converted photons. Polarization vectors are usually
ignored in Φ(qs,qi;ωs, ωi) and, consequently, the state
becomes very simplified and usually applied to collinear
cases of down conversion.

One can see the effect of this simplification without
much effort by writing the unit polarization vectors of
the down converted beams in a more general geometry.
By doing so a dependence on the azimuthal angle φ (φs

and φi) appears and the requirement for azimuthal sym-
metry shows the inconsistency of the toy models for this
case. The unavoidable coupling of these vectors to the ten-
sor χ(2) shows that symmetry requirements are needed to
guarantee the azimuthal symmetry for the intensity. One
may then ask what are these requirements or just ignore
the problem and use the toy models assuming their valid-
ity in some special cases. However, conclusions derived for
particular situations should not be extended to a general
case because they may not be valid; the crystal symmetry
may not even allow such process to occur. An introduc-
tion to this problem can be seen in references [6,17,18].
These considerations are often ignored in the literature, or
not believed to exist, e.g. [3,19]. Even phase relationships
between pump and down-converted beams arise precisely
from the response function (χ(2) tensor) of the nonlinear
medium. This response function defines the virtual ab-
sorption of the incident field and the fast following emis-
sion (or scattering) of the medium. This process is what
defines if the medium will absorb z−polarized photons,
say, and emit them with an orthogonal polarization to
the pump beam as in the type I down conversion or with
both polarizations as in a type II scattering. This process
also imprints the phase relationship carried by the pump
mode to the down converted photon pair. A common un-
derstanding should be built on these basic points.

3 Single photons carrying angular
momentum l. Some questions

Although no one questions mode decompositions in angu-
lar momentum cases, one may wonder if the phase struc-
ture associated with the mode energy would imply that
each photon carries a quantum of orbital angular momen-
tum with respect to a quantization axis. In order to un-
derstand this problem in terms of the usual plane wave
description, one could start with a finite mode. A light
mode, limited in the direction transverse to the propaga-
tion direction, implies that a range of wave vectors are
contributing to establish the mode finiteness. These wave
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Fig. 1. Wave vectors
k and k’ around the
focus in a mode with
angular momentum l;
they do not cross the
z−axis. Wave vectors
can be selected by
spaced pinholes, for
example.

vectors, associated with phase relationships, establish the
helical propagation of the light energy around the quanti-
zation axis.

The quantized electric field describing a beam with
orbital angular momentum l can be written as

Êl(r, t) =

− i
∑
k

√
�ωk

2εV
[
uk,l(r) âke−iωkt − u∗

k,lâ
+
k eiωkt

]
, (2)

where uk,l(r) are classical solutions given by Maxwell’s
equations for specific geometries (wave guides, lenses, cav-
ities etc.) and âk and â†k define the quantum statistical
properties associated to the excitations of the mode. Fig-
ure 1 sketches a few eigenvectors associated to an angular
momentum mode. As phase is always associated with a
given reference, one may wonder if a direct detection (en-
ergy) of a single photon, from a mode with a given phase
structure, could reveal the angular momentum l. Interfero-
metric techniques exploring probability amplitudes reveal
variations in intensity that are associated to the angu-
lar momentum l. Macroscopic averages over these events
lead to forked diagrams or to the mode pictures presented
in [20]. As interference is a phenomenon determined at the
single photon level, these results could be understood as a
comparison between single photons registered at distinct
positions. In other words, the angular momentum l can
be revealed by comparing photon registers with distinct
wave vectors. Let us look at the decomposition of a vector
ul(r, t) describing a Laguerre-Gaussian wave packet into a
plane wave basis ε̂k (the index l can be used to designated
(p, l) in a Laguerre mode):

ul(r, t) =
∑
k

Uk,l(r)ε̂k e−iωkt, (3)

where Uk,l are components of the unitary matrix U
(U−1 = U †) that transforms the Laguerre-Gaussian to
a plane wave basis. The quantized electric field,

Ê(+)(r, t) =
∑
k

lE(k)ε̂k âkei(k·r−ωkt), (4)

where lE(k) = −i
√

�ωk/(2εV ), can be written using the
identity âk =

∑
k′ δk,k′ âk′ and

∑
l UlkU

∗
k′l = δk,k′; one

obtains

Ê(+)(r, t) =
∑

l

[∑
k′
U∗

k′lâk′

][∑
k

UlklE(k)ε̂kei(k·r−ωkt)

]
≡
∑

l

ĉlul(r, t) =
∑

l

Ê(+)
l (r, t), (5)

where ĉl =
∑

k′ U∗
k′lâk′ is the annihilation operator for a

quantum of excitation in the Laguerre-Gaussian mode. ĉ†l
creates a set of photons with wave vectors k and Ulk is the
probability amplitude to get a photon with wave vector k
in mode l. In the plane wave or momentum representation
the annihilation operators âk do not carry the variable l.
This lack of a signature of AM in a single photon, with a
defined or selected wave vector, indicates that in this case
no measurement would show an l signature.

An interesting method, proposed in reference [20], in-
tends to identify the angular momentum carried by single
photons. It clearly identify distinct l-modes, as it was cor-
rectly shown in that reference. Without selecting a wave
vector, a single photon detection could be seen originating
from one among all possible wave vectors present in the
l-beam. In a sense, as defined by the l filter, the probabil-
ity amplitudes for all possible wave vectors in the beam
could interfere, resulting in the single event connected to
the value l. One may start asking if a single photon pass-
ing through the filter system would be able to excite an
atomic or molecular system with the selection rule ade-
quate for the specific l-transition or, say, to turn an atomic
or molecular system by light absorption with a resulting
motion corresponding to the given l-value. The proposed
method is still to be demonstrated experimentally, at the
single photon level. If correct, it would provide a demon-
stration for the association of the index l to the annihi-
lation and creation operators for photons carrying orbital
angular momentum.

4 Entangled angular momentum states
and constant of motion

The question whether angular momentum from a pump
beam could be transferred to photon pairs from SPDC
was studied theoretically in [6,18,22] and was experimen-
tally demonstrated using type I down conversion in ref-
erence [9]. These studies agree on the fact that angular
momentum transfer is possible and that the angular mo-
mentum value l should be attached to the photon pair as a
whole. Experimental results in [9] show correlation in pho-
ton counts, in type I down conversion, whenever angular
momentum filters placed in front of the s and i detec-
tors are chosen with a value that adds up to the angular
momentum per photon of the pump beam.

However, a fundamental disagreement exists between
the two theoretical treatments: (1) references [6,18] em-
phasizes that the nonlinear response function of the ma-
terial, given by the tensor χ(2), determines the coupling
between the pump polarization vector and the down con-
verted polarization vectors at chosen (arbitrary) propaga-
tion angles. As the symmetry of the crystal is reflected in
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χ(2), and on the linear refractive properties of the medium,
the scattering efficiency depends on the symmetry, in gen-
eral. It also shows that the quantum state of light repre-
senting down conversion processes has to predict a scat-
tering intensity independent of the azimuthal angle φ to
guarantee energy flow conservation on the transverse plane
to the pump propagation direction. The probability ampli-
tude for down conversion to occur is directly proportional
to the product of χ(2) and the unitary polarization vectors.
Consequently, azimuthal independence is not guaranteed
for arbitrary scattering geometries. It is also stressed that,
in general, this is very relevant at large scattering angles.
At low scattering angles (paraxial cases) this condition
could be relaxed in some cases because the unitary polar-
ization vectors may present a negligible dependence on φ.
(2) Reference [22], by its turn, emphasizes that crystal
symmetry plays no role in determining the orbital angu-
lar momentum of any of the beams in general, and present
a theory adequate for paraxial cases.

The predicted differences are too striking to be ig-
nored. Experimental tests could probe for the predicted
differences. For example, if an experiment designed to re-
veal a clear azimuthal angular dependence in the coupling
χ(2)-to-polarization vectors succeeds to demonstrate down
conversion, the model [6,18] will be shown wrong, in favor
of [22]; and vice versa.

Reference [6] also predicts that the l-entanglement may
leave its signature on a photon pair, without relying in
mode decompositions as was done in reference [9]. This
section explains this idea, after introducing the basic no-
tations.

An interaction Hamiltonian describing parametric
down conversion and that contains the minimum nec-
essary features to understand features beyond quasi-
collinear or paraxial cases is

ĤI =
∑
σ,σ′

∫
d3ks d3ki l

(∗)
E (ωks) l

(∗)
E (ωki) â

†(ks, σ) â†(ki, σ
′)

×ei(ωks+ωki)tχqjk (eks,σ)∗j (eki,σ′)∗k

×
∫

VI

d3rEPq (r, t) e−i(ks+ki)·r + h.c. (6)

VI is the nonlinear interaction volume, EP (r, t) is the elec-
trical field associated with the pump beam, subscripts s
and i indicate signal and idler and indexes (σ, σ′) represent
possible polarization states, l(∗)E (ωk) = −i

√
�ωk/2ε(k, σ).

Repeated indexes q, j and k imply summations. The pump
beam is a LG mode propagating along ẑ and polarized
along direction x̂(= e1 → q):

El,p (ρ, φ, z; t) ≡ ψlp (r) ei(kP z−ωP t) x̂

=
Alp√

1 + (z2/z2
R)

( √
2ρ

w (z)

)l

Ll
p

(
2ρ2

w2 (z)

)
exp

(
i
kP ρ

2

2q (z)

)
×eil arctan (y/x) exp

(
−i (2p+ l + 1) arctan

z

zR

)
×ei(kP z−ωP t) x̂, (7)

where zR is the Rayleigh length, w (z) = w0

√
1 + z2/z2

R
(w0 is the beam radius at the waist z = 0), q (z) = z− izR
and ρ =

√
x2 + y2. The first order approximation for the

state vector of the down-converted light leads to

|ψ (t)〉 = |0〉 +
∑
σ,σ′

∫
d3ks

∫
d3ki χ

(2)
qjk (es,σ)∗j (ei,σ′)∗k

×l(∗)E (ωks) l
(∗)
E (ωki) ei∆ω t/2 T (∆ω)

×ψ̃lp (∆k) â† (ks, σ) â† (ki, σ
′) |0〉 , (8)

where ∆ω = ωks + ωki − ωP , ∆k = ks + ki − kP ,
ψ̃lp (∆k) =

∫
VI

d3rψlp (r) exp (−i∆k · r) and the time win-
dow function is T (∆ω) = sin (∆ω tint/2) / (∆ω/2). Under
reasonable approximations [6] one has

ψ̃lp (∆k) = Blpei∆kzz0/2 W (∆kz) ϕlp (ρs, ρi, φs − φi)

× ρl
k eiγkl, (9)

where z0 is the position of the center of the nonlinear
medium, W (∆kz) = sin (∆kz�c/2) / (∆kz/2) is the spatial
window function and �c is the crystal length, φs and φi

are the azimuthal angles for signal and idler photons, ρs =
ks sin θs and ρi = ki sin θi are transverse components of
the wave vectors. One should observe from equation (9)
that for ρk = 0, ρl

k = 0 unless l = 0. Also,

Blp =
(
zRπ/k

l+1
P

) (
zR

√
2/w0

)l

× exp
[
−π

2
i (1 − l − p)

]
2p−l+1,

ρk =
√
ρ2

s + ρ2
i + 2ρsρi cos (φs − φi),

γk = arctan
ρs sinφs + ρi sinφi

ρs cosφs + ρi cosφi
,

and

ϕlp (ρs, ρi, φs − φi) =

Ll
p

(
zR ρ

2
k

kP

)
exp

(
−zR ρ

2
k

2kP

)
exp

(
−i
z0 ρ

2
k

2kP

)
· (10)

4.1 Entangled angular momentum states

At phase matching condition, the state of light derived
from equation (8) was found to be

|ψlp (t)〉 =
∫

d3ksd3ki

l∑
n=0

F
(0,n)
lp (ks,ki)

× |1ks , jz = n〉 |1ki , jz = l − n〉 ≡
l∑

n=0

|Ψn〉, (11)

where the amplitude probability F (0,n)
lp (ks,ki) is

F
(0,n)
lp (ks,ki) = Aks;ki l

(∗)
E (ωks) l

(∗)
E (ωki)Blpρ

l
k

× eiγkl ei∆ω t/2 T (∆ω)W (∆kz)
(
l

n

)
ϕlp (ρs, ρi, φs − φi) ,
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and

Aks;ki = χ(2)
qjk

[
(eks)

∗
j (eki)

∗
k + (eki)

∗
j (eks)

∗
k

]
· (12)

Indexes σ and σ′ are included in the wave vectors. One
could write equation (11) as

|ψlp (t)〉 =
∫

d3ksd3ki

l∑
n=0

F
(0,n)
lp (ks,ki)

× â†ks,n
â†ki,l−n

|0s〉 |0i〉 . (13)

Each “biphoton” created by â†ks,n
â†ki,l−n

, with probability

amplitude F (0,n)
lp (ks,ki) carries information on the angu-

lar momentum l. What produces a difference between this
case and the one treated in Section 3 are the phase match-
ing conditions. The simplified approach used for phase
matching in reference [18] for the case (p = 0, l) gave,
respectively, the longitudinal and transverse conditions

−kP + (ks cos θs + ki cos θi) =
2π
�c
, (14)

ρ2
s + ρ2

i + 2ρsρi cos(φs − φi) =
kP l

zR
· (15)

One can see that making zR → ∞ is equivalent to l → 0.
This is sufficient to show that without beam divergence,
orbital angular momentum will not be transferred to a
conjugated photon pair. Of course, for finite but large
zR the signature of AM transfer may become vanishingly
small to be detected. This can also be seen from equa-
tions (9, 10), where ϕl0 (ρs, ρi, φs − φi) → 0 when zR → 0.

Using this simplified approach the correlated emissions
of signal and idler on the transverse wave vector plane was
obtained, as shown in Figure 2. In reference [18] it was
shown that for Laguerre (l, 0) modes, the condition for
maximum of the probability amplitude, a phase matching
condition, gives ρk0 =

√
kP l/zR. This condition is equiv-

alent to the “constant of motion”

|(ksx + kix)x̂ + (ksy + kiy)ŷ|2 =
kP l

zR
· (16)

With the knowledge of the parameters kP and zR a mea-
surement of the wave vectors of the down converted pho-
tons by an observer stationary with respect to the laser
beam would reveal the angular momentum l of the LG
pump beam. This constraint appear due to the transverse
phase matching and, this way, the conjugated pair of pho-
tons carry the variable l. In a way, one of the photons
in the pair acts as a reference for the other or, in other
words, the l information is “written” on the two photons
due to the entanglement. The angular momentum l is then
a variable attached to the photon pair. Probing just one
photon of the pair will not reveal the l-mode information
in the pump beam.

All of these results were based on SPDC produced by
CW monochromatic pump beam. Angular momentum en-
tanglement could be also studied in the case of a broad
band pump [21] where the uncertainty in the down con-
version emission times is reduced and the requirements for
AM entanglement may be modified.

Fig. 2. Conjugated wave vectors on the transversal plane
(k̂x, k̂y). Solid lines at each (sj , ij) indicate a possible wave
vector for conjugated signal and idler. Dashed lines indicate
another emission possibility for each counterpart wave vector
given by a solid line. The emission cone has an angular aper-
ture of 4◦ (small angle regime). Each conjugate wave vector is
displaced 4.3◦ (or −4.3◦) from the value π. A sum of the wave
vectors ks2 + ki2 is indicated. Every sum of conjugated wave
vectors has identical magnitude.

4.2 Constraints imposed by the crystal symmetry
on the down conversion process

In Section 2.1 the importance of geometry on the down
conversion process was mentioned. This dependence is
contained in Aks,σ;ki,σ′ , as given by equation (12). It con-
tains the scattering angles for specific down conversion
geometries and the polarization vectors; the crystal sym-
metry is embedded in the susceptibility tensor and in the
polarization vectors as given by Fresnel’s and Sellmeir’s
equations. For cases where Aks,σ;ki,σ′ does not depend
on the azimuthal angles, or this dependence can be ne-
glected, one should expect transfer of angular momentum
from the pump beam to the down converted photons [6]
(see also discussions in [17,23]). For example, in quasi-
collinear scattering in type I down conversion the ampli-
tude Aks,σ;ki,σ′ has an almost negligible dependence on
the azimuthal angle; AM entanglement has been demon-
strated for this case [9]. In type II down conversion, the
polarization vectors are more dependent on the azimuthal
angle, even at low scattering angles, due to the propaga-
tion of down converted light polarized along the extraor-
dinary direction of the crystal. Experimental studies of
AM entanglement in type II down conversion are, in par-
ticular, expected to give important results for comparison
with existing theoretical descriptions.

4.3 Rotating reference

The orbital angular momentum may depend on the ref-
erence utilized for its description. For example, looking
at the phase structure defining an l-mode one may see
this signature by measuring the phase shift as the beam
is rotated by a given angle [24] on a table-top experiment.
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In the case of down converted photons, looking at the
transverse scattering plane (see Fig. 2), at radius ρk0 , one
may measure the angle ∆φ deviated from π. One may ask
what value would be seen by an observer rotating, with
an arbitrary speed, around the pump beam propagation
axis (quantization axis). In other words, one may ask if a
rotating observer could measure a distinct value l′ for the
angular momentum. Distinct measurements could lead to
a gyroscopic device to detect the relative motion between
two separated observers, in a different geometry than the
one described in reference [24]. E.g., an observer on Earth
could detect ∆φ while another observer, on a spaceship,
may detect ∆φ′, from which the relative frequency be-
tween the two observers could be obtained.

An estimate for l′ can be obtained by following a phase
value during a time interval ∆t, obtaining an arc sa at
fixed ρk0 : sa = Ωφρk0∆t. Considering the arc sa as a rec-
tilinear section, as a simplification, one could say that for
an observer rotating with angular speed ωr around the
z-axis (paraxial scattering, for simplicity) the measured
arc s′a will be

s′a = γ [sa − (ωrρk0)∆t] = γρk0∆t(Ωφ − ωr), (17)

where γ = 1/
√

1 − (ωrρk0/c)2. Thus ∆sa = sa − s′a =
ρk0∆t[ωr −Ωφ(γ − 1)], from which a change δφ = ρk0δsa

from ∆φ measured by the stationary observer results and
may reveal l′.

Processes relying in multi-photon-pairs entangled in
angular momentum may provide an enhanced sensitivity
for detection of relative motion based on photon coinci-
dences.

5 Polarization and angular momentum
entanglement

The addition of polarization entanglement to the s and
i system has produced several studies. The equations de-
scribing the generation and propagation of the down con-
verted light in matter prescribe states of light with defined
polarization states, as allowed by Aks,σ;ki,σ′ . In this way, a
certain arrangement can generate light polarized in a sin-
gle polarization state, say horizontal (H) for both s and
i photons (type I down conversion) or, H for a s photon
and vertical (V ) for the i photon (type II down conver-
sion). For type II and along special directions [25,26], if
one knows the polarization of a detected photon one also
knows that entanglement defines the polarization of the
conjugated photon. These cases are produced by states of
down-converted light that are either (Hs, Vi) or (Vs, Hi)
with the same probability. These entangled states are akin
to the spin states associated to an electron pair, and bring
with them the same conceptual problems associated with
the famous EPR paradox. If one associates a possible bit
with each polarization, the normalized state of the two
particles propagating along directions a and b is written
in the symmetric form

|Ψ (+)〉 =
1√
2

(|H〉a|V 〉b + |V 〉a|H〉b) . (18)

As a bosonic system the symmetry of the state has to
be conserved under “spin” (polarization) and position ex-
change. This state can be interpreted as carrying two bits
of information, or two polarization states, for each pho-
ton [27]. This is a result that cannot be reproduced by a
classical system. One should understand that, by using a
polarizer, the measurement process projects the state to
a specific polarization for each photon (1 bit/photon) but
the fundamental uncertainty on the polarization state re-
sides until the specific measurement is performed. A com-
plete Bell state bases can be obtained by appropriate de-
sign of the emitter system and complementary optics.

Type I down conversion has also been used to produce
entangled states of the form given by equation (18) [28].
However, in this case one should rely on trajectory super-
positions and neglect photon pairs in a same trajectory;
only then entanglement results. In type II down conversion
the entangled state is defined at the source while in type I
it occurs due to the neglect of a set of photon occurrences;
one may classify this last case as a pseudo-entanglement
or, even more drastically, as an incomplete entanglement.
Nevertheless, one may argue that when properly normal-
ized to take into account the set of ignored events, type I
down converted states may be useful to reveal entangle-
ment characteristics for AM studies.

The richness of adding angular momentum to the para-
metric down conversion processes have been indicated the-
oretically by the first time in [6], and experimentally in [9],
and can be represented by equation (13). Although these
ideas were to be expected from basic concepts, and in
fact they have been latter studied in [29], exploring these
new features is not a straightforward task [18,22]. Fig-
ure 3 sketches a possible arrangement to achieve angular
momentum and polarization entanglement by path indis-
tinguishability of entangled signal and idler photons in
type I down conversion. In this entanglement configura-
tion, coincident photons from the two BS ports will be
described by

|Ψn〉 =
1
2

( |H, l − n〉a|V, n〉b + |V, n〉a|H, l − n〉b
+|V, l− n〉a|H,n〉b + |H,n〉a|V, l − n〉b ) , (n = 0, · · · , l),
where |Ψn〉 was defined in equation (11).

One may question if polarization and AM entangle-
ment could occur using type II down conversion instead
of type I. A study of the term Aks,σ;ki,σ′ may be necessary
to provide an answer for this question.

6 AM entanglement in R-space

Frequently, studies of parametric down conversion explore
properties in the wave vector space {ks,ki}· How to ex-
tend these studies to the position space {rs, ri}, without
using imaging techniques? Of course, an angle defining
a wave vector propagation will coincide with an angle
obtained from position measurements in photon detec-
tion but variances in {ks,ki} and {rs, ri} spaces provide
complementary information. In principle, this is also an
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Fig. 3. Basic arrangement for polarization and angular mo-
mentum entanglement. Down converted beams are splitted at
beam splitter BS and recombined after one of the beams passes
through a half-wave plate. Other mirrors (M) can be included
as necessary. A dychroic mirror separates the pump photons
from the down converted pairs right after the crystal.

adequate frame to study the problem of different observers
in relative motion.

Using the wave state for twin photons with angular
momentum, equation (11), written in a wave vector bases,
a Fourier transform could be applied leading to

|ψ(t)〉 =
∑

n

∑
ks

∑
ki

F (n)(ks,ki)|1ks,n〉 |1ki,l−n
〉

=
[

V

(2π)3

]2∑
n

∫
dks

∫
dkiF

(n)(ks,ki)|1ks,n〉|1ki,l−n
〉

=
1
V 2

∑
n

∫
drs

∫
dri Γ

(n)(rs, ri) |1rs,n〉 |1ri,l−n
〉, (19)

for Γ (n)(rs, ri) = Γ (n)(−rs,−ri) in the medium. This is
easily accomplished by a laser focused at the center of the
nonlinear medium. The probability amplitude to find a
conjugated pair in rs and ri is associated with the spatial
function Γ (rs, ri).

Fourier transforming the probability amplitude in the
wave vector space as described in equation (19) gives di-
rectly the amplitude Γ (rs, ri) in series solution. The first
terms in this series, for a given (λs, λi) (or ks, ki), at the
phase matching condition, is

Γ
(n)
l0 (rs, ri) = ei ks(zi+zs) cos θ0ks

4 sin2 θ0alp li2 ls2 ρk0
lBpl

×
(
l

n

)
Ll

p(
ρk

2 ω0
2

2
)e−

zR ρk0
2

2 kp

[
eilδ/2J0(ap) + e−ilδ/2J0(an)

]

0.9
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1
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Fig. 4. Probability |Γ |2 (arbitrary units) for idler detection in
the (x, y) plane once a signal photon is detected at (xs = −1,
ys = −1), for the case (p = 0, l = 1).

where

ap = ks sin θ0

×
√

(xs − xi cos δ − yi sin δ)2 + (ys − yi cos δ + xi sin δ)2

an = ks sin θ0

×
√

(xs − xi cos δ + yi sin δ)2 + (ys − yi cos δ − xi sin δ)2,

and δ = |φs − φi| gives the phase difference according to
the phase matching condition (here l = |l| and two possi-
ble events are shown). These first terms in the series would
describe twin photons with low values of angular momen-
tum. Figure 4 shows the expected idler occurrences over
the transverse (xi, yi) plane when a signal photon was de-
tected at position (xs = −1, ys = −1) in cm. The devi-
ation from (xi = yi = 1) cm shows the off-plane occur-
rence for signal-idler-pump photons. Of course, this was
obtained under several simplifications but the off-plane
deviation is clear. The (x, y) and z-dependencies are tied
up by the scattering angle θ0.

6.1 Quasi-probability distributions

The Wigner distribution has been established as a stan-
dard one to which other quantum distributions could be
compared and a Wigner function for this twin photon
system entangled in angular momentum could eventu-
ally been measured, with quadratures of the scattered
field providing the variables for the distribution. How-
ever, other quasi-probability functions can be useful to
provide information on quantum or classical systems. Ref-
erence [30] presents a Wigner representation of Laguerre-
Gaussian beams and derives connections between this and
the Wigner representation of Hermite-Gaussian modes.

For the case of AM entanglement of photon pairs a
quasi-probability distribution can be written to give the
probability of occurrence of specified wave vectors (k) and
positions (q), for signal and idler pair, through

Wc(qs,ks;qi,ki) =
(

1
2π

)6 ∫∫
drsdri eiks·rseiki·ri

×
〈
qs − rs

2
,qi − ri

2
|ρ̂|qs +

rs

2
,qi +

ri

2

〉
. (20)
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Writing ρ̂ = |ψ〉〈ψ|, where |ψ〉 is given by equation (19)
results

Wc =
(

1
2π

)6 ∫∫
drsdri eiks·rseiki·ri

× Γ ∗
(
qs +

rs

2
,qi +

ri

2

)
Γ
(
qs − rs

2
,qi − ri

2

)
· (21)

Equation (21) satisfies the basic properties for a quasi-
probability function including∫∫

dksdkiWc(qs,ks;qi,ki) = |Γ (qs,qi)|2. (22)

Projections of this quasi-probability function Wc on the
wave vector or R space can also be used to predict re-
sults of experiments with photons in angular-momentum
entangled states, as exemplified in Figure 4.

7 Conclusions

Recently, the transfer of AM from a pump beam to down
converted photons has been demonstrated for type I down
conversion and in a low scattering angles [9]. This work
proposes a few ideas connected to this process and show
fundamental divergences between two published theories
describing AM transfer. Basically, one of them, refer-
ences [6,18], stress a dependence with the crystal geome-
try. This dependence appears in some terms, including the
tensorial product of the nonlinear susceptibility and the
unitary polarization vectors. At low small scattering an-
gles this dependence can be relaxed for some crystals but
it is more visible at large scattering angles. The other the-
ory, described in references [19,22], takes the point of view
that the orbital angular momentum transfer is not depen-
dent on the discussed tensorial product, that is related
to the crystal symmetry and to the unitary polarization
vectors for arbitrary scattering angles.

Studies on AM transfer may depend on a correct model
for further advances. The reader is invited to join the dis-
cussion.
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